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THE PHOTOMETRIC CHARACTERISTICS OF 

LUMINAIRES  

 

4.1 Generalities 

 

The main part of a luminaire is the lamp, which is defined as the ensemble formed by 

the light source, the distribution system, the spatial repartition of the light flux 

(reflector) and the mechanical resistance system (reinforcing steel) in which are placed 

the lamp’s accessories (ballast, starter, sockets). The main function of a luminaire is the 

rational redistribution of the flux emitted by the light source in order to obtain, in an 

economical way, the prescribed light level, on the usable area. The second function of 

the luminaire is the protection of the eye from the high luminance of the lighting source, 

and it is as important as the main function. In order to accomplish this task the reflector 

covers the lamp with opaque parts or with broadcast transmitters, lowering the harmful 

influence over the eyes.  

From the point of view of the utilization area, we have close action luminaires (of 

general use), far action luminaires (projector type), signaling, projecting or irradiating 

luminaires. From the phototechnic point of view, luminaires have the following 

characteristics: polar curve, isolux curves, efficiency, local light flux distribution, 

protection angle, amplification factor, maintaining illuminance coefficient and 

protection degree.  

 

4.2 The polar curve of the luminaires  

The spatial distribution of the luminous intensity of a luminaire is given by the 

photometric surface represented by the luminous intensity vectors’ hodograph. This 

surface delineates the photometric body which admits or not a symmetry plane. The 

intersection of the photometric surface with a meridian plane which contains the 

luminaire optical axis it’s called polar curve. This curve can be described through a chart 

or is drawn in polar coordinates for the conventional lamp of 1000lm.  

The polar axis coincides with the optical axis of the luminaire and the reference system 

0 (zero) pole is considered in the center of the lighting source or of the luminaire.  

The lighting sources of which the photometric body is a body of revolution are called 

symmetric sources and the polar curves (fig.4.1-a) have the same shape no matter what 

the secant meridian plane is. The light sources of which photometric body doesn’t admit 

a symmetry axis are called asymmetry sources and the polar curves have different 

shapes in different meridian planes, whence the necessity of the polar curves family 

(fig.4.1-b).  

In polar coordinates the polar curves can be analytically expressed under the form: 

 

I=f()         or         I=f(,)  

where:   

 - elevation angle, defined as the angle between the direction of the luminous intensity 

and the light source axis(is measured in the secant meridian plane);  

 - azimuth angle, is the dihedral angle formed between the reference meridian plane 

and the current meridian plane.  

 

4.3 The isolux curves of the luminaires  

The isolux curves are useful for the design of the interior or exterior luminaires through 

the point by point method. Depending on the initial conditions there are:  

-relative isolux curves representing the geometrical place of the points which have the 

same illuminance, located in the normal q plane on the optical axis of the source, at the 

distance of one meter from it (a conventional plane);  

-spatial isolux curves representing the geometrical place of the space points which have 

the same illuminance and belong to the normal planes on the optical axis of the source.  

To draw the isolux curves it is necessary to know the polar curve of the luminaire, as 

well as the recurrence relation between the illuminance and the luminous intensity 

related to a calculation point included in the normal plane (H or q) on the luminaire’s 

optical axis (fig4.2-a).  

Thus, at the drawing of the relative isolux curves, the relative illuminance r of the point 

p from the conventional plane q is:  

Fig.4.1 Polar curves for the symmetric (a) and asymmetric (b) luminaires   
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and  if the 

angle is imposed, we extract from the polar curves the values I and it results, in the 

end, the dependence I=f(d*). In the case of the symmetric lamps the function chart r= 

f(d*) has two branches (fig.4.2-b) a decreasing one for [ 0,/4] sau d*[0,1] and a 

increasing one for [/4,/2] sau 1/d*[0,1]. It is to mention that this kind of curves 

can be drawn also for the asymmetric luminaires.  

On the same direction  the correspondent of p is P from plane H of which the 

illuminance is:  

223 hhcosIe r   [lx] 

where:  

h - distance from the luminaire to the computation plane, [m];  

d - distance between calculation point-projection of the center of the lamp on the useful 

plane, [m];  

d*=d/h=tg  -relative (reported) distance (coordinate) of the computation point. 

 

The methodology to draw the spatial isolux curves consists in the following steps: 

-it is imposed the value e of the illuminance for which is drawn the isolux curve; 

-there are given values for the  angle and there are extracted the values I from the 

polar curve; 

-there are determined the cartesian coordinates of the isolux curve points; 
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-the function h=f(d)e=ct is graphically represented (fig.4.2-c); 

It must be noted that this spatial isolux curves can be drawn only for symmetrical 

luminaires. 

 

4.4 The luminaire efficacy  

 

The luminaire efficacy c is defined as the ratio between the emitted luminous flux c of 

the luminaire and the flux of the light source iz: 

izc   
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Fig.4.2 Explanatory (a) for the drawing of the relative (b) and spatial (c) 

isolux curves 
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a Fig 4.3 Explanatory for defining the angular  coefficient 
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denoting that the flux estimation c is determined by means of numerical methods 

(graphical-analytical) or graphical.  

 

a. The graphical-analytical methods are based on the hypothesis that the luminous flux 

 emitted in the solid angle 

angle and the average luminous intensity Im of that angle:  

 mI    [lm] 

If  which it is seen, from the center of the sphere, a random 

spherical area (fig.4.3), then its value will be:  
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which is named angular coefficient for the 2-1 area. 

Observing this relationship it is denoted: 

- at the spherical areas having equal height h, equal angular coefficients match. 

- the angular coefficients can be determined if there are known the plane angles   

formed between the generators of the cones which determines the solid angle and their 

axis. 

Based on this observation there were imposed two methods of numerical calculus of the 

luminous flux emitted by a symmetrical luminaire which has the polar curve known: 

 the equal solid angles method according to which through the separation of 

the diameter of the sphere D in n equal parts (h = h2-h1 = hk = D/n = 2R/n) there are 

obtained equal angular coefficients =4/n [sr].  

The luminous flux k of the k area, respectively c will be: 
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having Ims -spherical average luminous intensity, numerically equal with the arithmetic 

average of the corresponding luminous intensities of the n spherical areas. 

Applying the method consists in the circumscription of a semicircle (fig.4.4-a) to the 

polar curve and dividing its diameter in n =10 or 20 equal parts.  

The average calculus luminous intensity Imk , for k areas, its read by the OA given by the 

center of the source O and the intersection point A between the semicircle and the 

mediator of the hk segment. For fast calculations, the angle k between the average 

luminous intensity Imk and the source axis is given in the Annex 4.1.  

 

  the equal planes angles method according to which through the separation 

of the big semicircle of the sphere in n* equal parts it is obtained, for the k area 

delimited by the k-1, k angles, the following angular coefficient: 
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and the following area flux:  

kmkk I    

which leads to a total flux of the luminaire equal with: 
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The practical application of the method consists in the circumscription of a semicircle to 

the polar curve (fig.4.4-b) and dividing it in n*=18 or 36 equal parts. The average 

luminous intensity Imk , of the k area, its read by the bisector of the k- k-1 angle. For 

faster calculations, the angular coefficients k for n*=18 are given in the Annex 4.2. 

 

b. The graphical methods, which can be especially applied for the symmetrical 

luminaires, consists in the graphical calculation of the analytical expression of the 

luminous flux  
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by transposing from polar coordinates in cartesian coordinates of the polar curve.  

Fig.4.4 Explanatories for the equal solid angles (a) and plane angles (b) 
methods 
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One of the most used approach 

is the Rousseau graphical 

method, presented in (fig.4.5): 

- it circumscribes to the polar 

curves a semicircle having the 

radius R, of which center O 

concurs with the luminaire 

center; 

- at an arbitrary distance from 

the axis of the source XX’ is 

drawn the parallel YY’; 

- the radius vector OB is 

extended, corresponding to the 

luminous intensity Iα to the 

intersection with the semicircle 

in B1; 

-the point B1, is projected in the 

direction YY’ in B2;  

- the segment B1B2  is extended 

with the B2B3 =aI, where a - 

mm/ cd] is a luminous intensity scale; 

- repeat the described procedure for a large enough number of points and it results the 

boundary O3, O4, A3 ….O4’, O3’ named Rousseau curve. 

The area S delimited by the Rousseau curve and the axis YY’ is proportional with the 

flux c of the luminaire, fact that is easily showed if we consider an infinitesimal 

increase d of the elevation angle, to which it corresponds the area element. 

 

dS=B2B3 B2D2 =a I R B1D1 sin a IR sin d [mm2] 

Keeping in mind that: d=2 Isin d  and  aRdSd  2   then:  
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4.5 Zonal distribution of the luminous flux 

Zonal distribution of the luminous flux (fig.4.6) represents the rate of the luminous flux 

of the light source which is emitted in solid angles of which axis concurs with the one of 

the luminaire. If, for example, we calculate the flux of the lamp using the equal plane 

angles method then for the area 0…40º we'll notice that: 
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4.6 Protection/Shielding angle 

The shielding angle  luminaire delineates the area from the space outside of 

which the eye doesn't perceive the high luminance (brightness) elements of the light 

source. For a given meridian plane (fig.4.7), the shielding angle is measured between the 

opening plan of the luminaire and the line connecting the opening edge with the opposed 

extremity of the light source, which leads to: 

rR

h
arctg


   

noting that the dimensions h, R and r have the same meaning as in the figure bellow. 

 

4.7 The amplification factor 

The amplification factor m it is defined as the ratio between the maximum luminous 

intensity Imx and the spherical average luminous intensity Ims of the lamp: 
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4.8 The maintenance factor 

The maintenance factor Δ of a luminaire is given by the ratio between the emitted 

luminous flux in the period of exploitation ce and the initial flux ci at the start of the 

operating period: 

Fig.4.5 Explanatory for the graphical method 
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 = ce / ci < 1,  

its value being lower than 1 because of the wear of the light source, the impairment of 

the photometric properties of the reflector’s materials, dust deposits etc.  

Keeping this parameter in reasonable limits can be achieved through periodic cleaning 

of the luminaire and replacing of the light sources at the expiration date. In design 

calculations it’s operating with the reverse of this parameter, named depreciation factor 

or depreciation coefficient. 

11 k   

 

4.9 The protection degree 

The protection degree of a luminaire is symbolized trough the alphanumeric group 

IPhaving the following significance: IP – protected fitting, τ- protection against 

ingress of foreign bodies, - protection against ingress of liquids,  - protection 

against mechanical damages. Depending on the environmental conditions in which the 

lamp is going to be mounted, exploited and maintained a proper level of protection is 

chosen. 

  

4.10 Laboratory work layout 

The laboratory classes focus on the following theoretical and practical problems: 

- it will be graphically represented a tabular polar curve of a luminaire which is 

equipped with a low-pressure mercury vapor conventional fluorescent lamp. 

- it will be drawn the relative isolux curves of the luminaire, and a spatial isolux curve 

having the value e; 

- it will be determined the luminaire efficiency c trough estimating c utilizing the 

equal solid angles method for n=20, the equal plan angles method for /n*=/18=10º 

- it will be drawn the zonal distribution of the luminous flux using the results obtained 

with the equal plan angles method.  

- it will be determined the amplification factor m operating with the 3 previously 

calculated values of the flux c; 

- there will be written the conclusions of the study. 

 

Annex 4.1 The value of k angle between the average luminous intensity Imk and the 

axis of the source in the case of dividing the diameter of the semicircle in n equal parts. 

 

n = 10  

k 26 46 60 75 84 

k 96 107 120 134 154 

 

n = 20  

k 18 32 41 49 57 

k 63 70 76 81 87 

k 93 99 104 110 117 

k 123 131 139 1148 162 

 

Annex 4.2 Angu k 
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Zona 0-10 10-20 20-30 30-40 40-50 

k 0.095 0.283 0.463 0.628 0.774 

Zona 50-60 60-70 70-80 80-90  

k 0.897 0.993 1.058 1.091  

Zona 90-100 100-110 110-120 120-130 130-140 

k 1.091 1.058 0.993 0.897 0.774 

Zona 140-150 150-160 160-170 170-180  

k 0.628 0.463 0.283 0.091  
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